0040-4039/80/1201-4753202.00/0

REDUCTION OF **Z**-2-CHLOROSTILBENE WITH LITHIUM ALUMINUM HYDRIDE: **EVIDENCE** *FOR AN* **ELECTRON TRANSFER RADICAL MECHANISM1**

P.R. singh*, Alok Niqsm* and S.M. Khurana **Department of Chemistry, Indian Institute** *of* **Technology, Kanpur-208016, India**

SummarY: J+2-Chlorostilbene undergoes uncatalyzed LiAIHq reduction giving phenanthrene and <u>Z</u>-stilbene. An electron transfer radical mechanism is propos ed. LiAlH_A induced isomerization of Z-stilbene produces E-stilbene.

Aryl bromides and iodides undergo uncatalyzed LiAlH₄ reduction conveniently; but aryl chlorides at best, give poor yields (26-50%) of the reduction products:⁵ **The only successful reduction of a chloroaromatic viz _. l-chloronaphthalene reported in the literature ⁶ required TiClq catalyst in refluxing THF. We now report the** first quantitative, uncatalyzed LiAlH_A reduction of an aryl chloride in THF at 25°C, wherein Z-2-chlorostilbene 1 yielded a mixture of phenanthrene 5 and Z**stilbene 6 by a mechanism which, we believe, involves initial transfer of an** electron from $LiAlH_A$ to 1. Subsequently, 6 undergoes $LiAlH_A$ induced isomeriza**tion giving s-stilbene 2.**

On the addition of LiAlH₄ contained in THF⁷ to a solution of $\underline{1}$ in the same **solvent at ambient temperature under dry nitrogen, with magnetic stirring, the reaction commenced with evolution of dihydrogen. The reaction mixtures in diffe**rent runs, on work-up after 12 or 24 hr, gave the results summarized in the Table.

It is evident from these data that 5 and 6 are formed first and 7 arises from the latter in a secondary process involving $LiAlH_{4}$. A comparison of the combined **yields of 5 and 1 with those of 2 in runs 2-6 reveals that the reductive cyclizatlon predominates over the simple dechlorination process: but this trend is reversed** *in runs* **7 and 8 where cyclohexene and cumene respectively, are present. The reported4 order of reactivities in the LiAIHq reductions of halobenzenes i.e., I >Br>Cl >F, is same as that observed 8 in electron transfer reductions using several different electron donor reagents. All these observations become discernible when intervention of radicals formed by dissociative electron** Capture **on 1 is considered significant as shown in the Scheme.**

in the present study. The extended conjugation in 1 presumably provides ABM0 of low enough energy for acceptance of an electron from LiAlH4 made available Conditions favoring electron transfer from \hbox{LiAlH}_{4}^{-9} to $\underline{1}$ in step 1 do exist

4753

Run	LiAlH ₄ mol	Time hr	% Yield of products ²			$H_2^{\ \ \, D}$
			Phenanthrene 2	Z-Stilbene ь	E-Stilbene	ml
$\mathbf{1}$	0.00625	$12 \,$	33	16	nil	20
\mathbf{z}	0.0125	$12 \,$	65	30	nil	32
$\overline{\mathbf{3}}$	0.0125	24	66	29	nil	32
4	0,025	12	66	25	5	38
5	0.025	24	68	20	8	40
6	0.04	24	68	5	22	62
7°	0.025	12	32	52	12	48
8 ^d	0.025	12	37	50	9	46

TABLE: Reaction of 1 (0.01 mol) with LiAlH₄ in 50 ml THF at 25°C

a. Crude products were separated into 5 and a mixture of 6 and 7 by elution with petroleum-ether (bp 60-80°) over activated silica gel column. Yields of 6 and 7 were estimated by glc (calibration method) using 10 ft. silicone rubber SE-30 column.

- **b.** Volume of H_2 was determined at atmospheric pressure by comparison with control experiment in the absence of 1 using same batch of reactants and solvent under identical conditions.
- c . In presence of cyclohexene (0.15 mol).
- d. In presence of cumene (0.15 mol).

SCHEME

by the process outlined in eq 1 alone or in combination with that symbolieed in eq 2.

$$
A1H_4 \longrightarrow A1H_3 + H \quad ; \quad H \longrightarrow \frac{1}{2}H_2 + e^* \quad \dots (1)
$$

$$
A1H_4 \longrightarrow A1H_4 + e^* \quad \dots (2)
$$

The radical 3, obtainable from the anion-radical 2 in the usual manner, ia known^{**} to prefer intramolecular phenylation (giving 5) over hydrogen atom **abstraction. I1 The favorable distance 12 of the order of 1.5 g between the two positions to be linked in 2 significantly contributes to cyclization. 13 Evidently, the life-time of radical 2 must be long compared to the time** of **rotation or oscillation of the rings. However, enhanced yields of stilbenes in rune 7 end 8 rsflect the knOwnl* ease of hydrogen atom donation by cyclohexene and cumene** respectively, to aryl radicals. The carbanion corresponding to radical 3, even **if formed, would not have cyclized.15**

Electron donation by LiAlH₄, as seen from the volume of H_2 evolved, generates only a fraction of the total amount of 3 that actually produces 5, 6 and 1* It is, **therefore, considered likely that besides reacting by step 3. rail**cal 3 picks up a hydrogen atom¹⁶ from AlH₄ producing 6 and anion-radical AlH₃² (eq 3). At this stage, AlH₃: intervenes as electron donor¹⁷ in step 1 which

$$
3 + \lambda I H_4^- \longrightarrow \underline{6} + \lambda I H_3^+
$$
 (3)

continues giving 3 as long as both 1 and $\lambda 1H_4^-$ are present. Consequently, eq 3 must account for a major portion of stilbenes obtained in runs 1-6. Indeed, run 3 conducted with $LiAlD_4$ instead of $LiAlH_4$ yielded \leq (65 %) and \leq (28 %) which contained largely the monodeuterated component (nmr). That 7 is produced by LiAlH₄ induced isomerization of 6 is evident from a comparison of the yields **of the two stilbenes in runs 4-0 with those in runs 1-3. This conclusion receives support from the following results obtained by reacting an authentic** $sample$ of 6 (0.01 mol) with LiAlH₄ in 50 ml THF at 25°C under nitrogen for 24 hr:

> **LiAlH4, mol 0.005 0.01 0.02 0.05 0.10 Yield of l (glc), % 50 55 80 93 96**

The possible role of LiAlH₄ as an electron donor in this and similar isomerizations¹⁸ as well as cyclizations leading to the synthesis of a variety of **carbocyclic and heterocyclic systems is under investigation.**

Acknowledgement: We thank the C.S.I.R., New Delhi, for the award of Research **Fellowships to A.N. and J.M.K.**

- (1) A preliminary account was presented at the International **symposium** on Nucleophilic Substitution, Pocono Manor, Pennsylvania, **U.S.A., April** 1975, Abstract No. 51.
- (2) Present addresst Chief Chemist, Kind & Knox, Division of Knox Gelatine, Inc., P.O.Box 725, Sioux City, Iowa 51102, **U.S.A.**
- (3) G.J. Karabatos, R.L. Shone and S.E. Scheppele, Tetrahedron Lett., 2113 (1964).
- (4) H.C. Brown and S. Krishnamurthy, J. Org. Chem., 34, 3918 (1969).
- (5) P. Olavi, I. Virtanen and P. Jaakkola, Tetrahedron Lett., 1223 (1969).
- (6) T. Mukaiyama, M. Hayashi and K. Narasaka, Chemistry Lett., 291 (1973).
- (7) Each dried batch was distilled over $LiAlH_A$ before use.
- (81 S.F. Hunnett, **Act. chm. Res., ll_,** 413 (1978).
- (9) Conclusions regarding electron transfer from LiAlH $_{\mathtt{A}}$ to some benzylic chlorides and bromides under similar conditions, based on esr and other evidence are reported in ref. 1 and to other conjugated systems in E.M. Gause and J.R. Rowlands, Spectroscopy Lett., 2, 219 (1976) and in ref. 16.
- (10) R.M. Elofson and F.F. Gadallah, J. Org. Chem., 36, 1769 (1971).
- (11) Results obtained in acetonitrile medium (ref. 10) are considered more or less valid when THF is the solvent.
- (12) The distance be**twee**n the same two positions in d -phenylcinnamic acid has been calculated by D.H. Hey and R.D. Mullay, J. Chem. Soc., 2276 (1952).
- (13) Other radical species present in the medium may pick **up** a hydrogen atom from 4 in step 4. Abstraction of a hydrogen atom by AlH₃ produced in the medium, in this step giving 5 and \cdot AlH_A is also a possibility worth consideration.
- (14) **R.F. Bridger and G.A. Russell, J. km. Chem. SOc., 85, 375% (1963).**
- (15) **P.R.** Singh and Ramesh Kumar, Ind. J. Chem., 2, 692 (1973).
- (16) **Sung-Kee Chung and** Fu-fan Chung, Tetrahedron Lett.. 2473 (1979).
- (17) . **Analogous species BH3-** produced by the loss of a hydrogen atom from PH4- in the NaRH4 reduction of 7,7-dibromonorcarane **acts** as **electron** donor: see J-T. Groves and K.W. Ma, J. Am. Chem. Soc., 96, 6527 (1974).
- (18) Isomerization of $\underline{6}$ and similar compounds in the presence of electron donors has been reported previously: M.A. Doran and R. Waack, J. Organomet. Chem., 3, 94 (1965); Ref. 15; M. Prashad, M. Seth and A.P. Bhaduri, Ind. J. Chem., 18B, 176 (1979).

(Received in UK 15 September 1980)